Finding the Slope

Identify the coordinates for two points on the line. Find the slope of each line.

A \((\underline{}, \underline{})\) and \((\underline{}, \underline{})\)

\[\text{rise} = \underline{} - \underline{} \quad \text{run} = \underline{} - \underline{} \]

\[= \underline{} \quad = \underline{} \]

\[m = \underline{} \]

B \((\underline{}, \underline{})\) and \((\underline{}, \underline{})\)

\[\text{rise} = \underline{} - \underline{} \quad \text{run} = \underline{} - \underline{} \]

\[= \underline{} \quad = \underline{} \]

\[m = \underline{} \]

C \((\underline{}, \underline{})\) and \((\underline{}, \underline{})\)

\[\text{rise} = \underline{} - \underline{} \quad \text{run} = \underline{} - \underline{} \]

\[= \underline{} \quad = \underline{} \]

\[m = \underline{} \]
Finding the Slope

d \((__, __)\) and \((__, __)\)

\[
\begin{align*}
\text{rise} & = __ - __ \\
\text{run} & = __ - __
\end{align*}
\]

\[= __ \quad = __
\]

\[m = ____
\]

e \((__, __)\) and \((__, __)\)

f \((__, __)\) and \((__, __)\)

\[
\begin{align*}
\text{rise} & = __ - __ \\
\text{run} & = __ - __
\end{align*}
\]

\[= __ \quad = __
\]

\[m = ____\]

Preview
Please log in to download the printable version of this worksheet.
Finding the Slope

a. \((-2, 1)\) and \((1, -1)\)

\[
\text{rise} = \frac{-1}{1} - \frac{1}{1} = \frac{-2}{1} \\
\text{run} = \frac{1}{1} - \frac{-2}{1} = \frac{3}{1}
\]

\[m = \frac{-2}{3} \text{ or } \frac{2}{3}\]

b. \((0, 0)\) and \((2, 3)\)

\[
\text{rise} = \frac{3}{0} - \frac{0}{0} = \frac{3}{0} \\
\text{run} = \frac{2}{0} - \frac{0}{0} = \frac{2}{0}
\]

\[m = \frac{3}{2}\]

e. \((0, 1)\) and \((2, -2)\)

\[
\text{rise} = \frac{-2}{1} - \frac{1}{1} = \frac{-3}{1} \\
\text{run} = \frac{2}{1} - \frac{0}{1} = \frac{2}{1}
\]

\[m = \frac{-3}{2} \text{ or } \frac{3}{2}\]

f. \((0, -4)\) and \((4, 0)\)

\[
\text{rise} = \frac{0}{-4} - \frac{-4}{-4} = \frac{4}{0} \\
\text{run} = \frac{4}{0} - \frac{0}{0} = \frac{4}{0}
\]

\[m = \frac{4}{4} \text{ or } 1\]